

Computational finite element methods

03 September, 2024

August–November Semester

Exercise sheet 1

1. Consider the reaction-diffusion equation

$$-\frac{d^2y}{dx^2} + y = f$$

where f is a continuous function. In the class, the Lagrange P^1 FEM was implemented only with the diffusion term. In this question, we shall attempt to extend this to the reaction term y .

- Write a variational form for the differential equation over $V = \{y \in C^1(0, 1) : y(0) = 0 = y(1)\}$.
- Construction of the local mass matrix.* Note that in the variation form the term

$$\int_0^1 y\varphi \, dx \tag{0.1}$$

appears, where $\varphi \in V$ is a test function. Recall that the local stiffness corresponding to the term $\int_0^1 y'\varphi' \, dx$ is

$$\begin{pmatrix} \int_{x_j}^{x_{j+1}} \frac{d\varphi_L}{dx} \frac{d\varphi_L}{dx} \, dx & \int_{x_j}^{x_{j+1}} \frac{d\varphi_R}{dx} \frac{d\varphi_L}{dx} \, dx \\ \int_{x_j}^{x_{j+1}} \frac{d\varphi_L}{dx} \frac{d\varphi_R}{dx} \, dx & \int_{x_j}^{x_{j+1}} \frac{d\varphi_R}{dx} \frac{d\varphi_R}{dx} \, dx \end{pmatrix}.$$

Could you use this and (0.1) to construct the local stiffness matrix for (0.1)?

- Design and implement a Lagrange P^1 FEM for the reaction-diffusion problem.

2. (Conservative form) Consider the ordinary differential equation

$$-\frac{d}{dx} \left(a(x) \frac{dy}{dx} \right) = f$$

where f, a are continuous functions. Moreover, $0 < m \leq a(x) \leq M$ for some $m, M \in \mathbb{R}^+$. Design and implement the Lagrange P^1 FEM for this problem with homogenous boundary conditions.

Hint. Use $\int_{x_j}^{x_{j+1}} a(x)f(x) \, dx \approx a((x_j + x_{j+1})/2) \int_{x_j}^{x_{j+1}} f(x) \, dx$.