

Order of convergence

15 January 2026 12:31

Order of Convergence

Consider two sequences $a_n = \frac{1}{n}$; $b_n = \frac{1}{n^2}$

Observe that intuitively b_n converges faster than a_n ; we will quantify this using big Oh and little oh notations.

Definition 1.1 (Big Oh and little oh)

Let $\{a_n\}$ and $\{b_n\}$ be sequences of real numbers.

① the sequence $\{a_n\}$ is said to be Big Oh of $\{b_n\}$, and write $a_n = O(b_n)$, if there exist a real number C and a natural number N such that

$$|a_n| \leq C |b_n| \text{ for all } n \geq N.$$

② the sequence $\{a_n\}$ is said to be Little oh of b_n and write $a_n = o(b_n)$ if for every $\epsilon > 0 \exists N \in \mathbb{N}$ such that

$$|a_n| \leq \epsilon |b_n| \forall n \geq N$$

Remark: 1) $a_n = O(b_n)$ iff the sequence $\left| \frac{a_n}{b_n} \right|$ is bounded.

2) $a_n = o(b_n)$ iff the sequence $\left| \frac{a_n}{b_n} \right| \rightarrow 0$

3) if $a_n = o(b_n)$ then $a_n = O(b_n)$.

But $a_n = O(b_n) \not\Rightarrow a_n = o(b_n)$

Example: $a_n = n$, $b_n = n+1$

Rate of convergence

Let $\{a_n\}$ be a sequence such that $\lim_{n \rightarrow \infty} a_n = a$.

i) the rate of convergence is atleast linear if there exist a constant $c < 1$ and a $N \in \mathbb{N}$ such that

$$|a_{n+1} - a| < c |a_n - a| \quad \forall n \geq N$$

2) The r.o.c is at least quadratic if there exists a constant c (c not necessarily < 1) and $N \in \mathbb{N}$ such that

$$|a_{n+1} - a| < c |a_n - a|^2 \quad \forall n \geq N$$

3) The r.o.c is at least α if there exists a constant c (c not necessarily < 1) and $N \in \mathbb{N}$ such that

$$|a_{n+1} - a| < c |a_n - a|^\alpha \quad \forall n \geq N$$