

Mean value theorems for integrals

20 January 2026 11:58

Mean value Theorems for integrals

Theorem 1. (MVT for integrals 1). If f is a continuous function on $[a, b]$, then there exists a number c in $[a, b]$ such that

$$\int_a^b f(x) dx = f(c) (b-a).$$

Theorem 2. (MVT for integrals 2). Suppose that f and g are continuous on $[a, b]$, and let $g(x) \geq 0$ for all $x \in \mathbb{R}$. Then there exists a number $c \in [a, b]$ such that

$$\int_a^b f(x) g(x) dx = f(c) \int_a^b g(x) dx.$$