

Error analysis - 1

20 January 2026 12:09

Error Analysis

Exact solution is approximated using numerical schemes, which incur an error called mathematical error (ME). Therefore,

$$\text{Exact solution} = \text{Approximate Solution} + \text{Mathematical Error.}$$

A finite digit arithmetic machine introduces additional error when a numerical scheme is implemented due to approximation of numbers using finite digits. This error is called arithmetic error and the output is called numerical solution.

$$AS = \text{Numerical Solution} + \text{Arithmetic Error}$$

$$ES = NS + \boxed{AE + ME} \rightarrow TE$$

Floating point representation

Let $\beta \in \mathbb{N}$ and $\beta \geq 2$. A real number can be represented exactly in base β

$$\text{as } (-1)^S \times (0.d_1 d_2 \dots d_n d_{n+1} \dots)_\beta \times \beta^e$$

where, $d_i \in \{0, 1, \dots, \beta-1\}$ with $d_1 \neq 0$ or $d_1 = \dots = d_n = \dots = 0$,

$S=0$ or 1 and the appropriate integer e is called the exponent.

Here,

$$0.d_1 d_2 \dots d_n d_{n+1} \dots = \frac{d_1}{\beta} + \frac{d_2}{\beta^2} + \dots + \frac{d_n}{\beta^n} + \frac{d_{n+1}}{\beta^{n+1}} + \dots$$

is called the mantissa (β -fraction), S - sign, β - radix. This representation

is called floating point representation.

Floating point approximation

An n -digit floating-point number in base β is of the form

$$(-1)^S \times (0.d_1 d_2 \dots d_n)_\beta \times \beta^e$$

$d_1 \neq 0$ or $d_1 = d_2 = \dots = d_n = 0$, $s=0$ or $s=1$ and an appropriate exponent e .

Underflow and overflow of Memory

In every computing device, the exponent e has an upper bound and a lower bound.

That is $m < e < M$.

If in a calculation, $e > M$, then memory overflow occurs and if $e < m$, the memory underflow occurs.