

Chopping and Rounding

21 January 2026 09:11

Chopping and rounding of numbers

Definition. (chopped and rounded number)

Let a be a real number given in the floating point representation as

$$a = (-1)^s \times (0.d_1 d_2 d_3 \dots d_n d_{n+1} \dots)_{\beta} \times \beta^e$$

The floating point approximation of a using n -digit chopping is given by

$$f_l(a) = (-1)^s \times (0.d_1 d_2 d_3 \dots d_n)_{\beta} \times \beta^e$$

The floating point approximation of a using n -digit rounding is given by

$$f_l(a) = \begin{cases} (-1)^s \times (0.d_1 d_2 d_3 \dots d_n)_{\beta} \times \beta^e & 0 \leq d_{n+1} < \beta/2 \\ (-1)^s \times (0.d_1 d_2 d_3 \dots (d_{n+1}))_{\beta} \times \beta^e & \beta/2 \leq d_{n+1} < \beta \end{cases}$$

Example: $\pi = (-1)^0 \times 0.31415926 \dots \times 10^1$

$$f_{l_5}(\pi) = (-1)^0 \times 0.31415 \times 10^1 \approx \pi \quad (\text{chopping})$$

$$f_{l_5}(\pi) = (-1)^0 \times 0.3141\cancel{5} \times 10^1 \approx \pi \quad (\text{rounding})$$

Machine epsilon

The machine epsilon of a computer is the smallest positive floating-point number δ such that

$$f_l(1+\delta) > 1$$

For any floating point number $\delta < \delta$, we have $f_l(1+\delta) = 1$, and $1+\delta$ and 1 are identical within the computer's arithmetic.

Types of errors

Error = True Value - Approximate value
|Error| - Absolute error

Relative error = $\frac{\text{Error}}{\text{True Value}}$

% error = $|RE| \times 100$

$q - \tau_V$, q_A - Appr. value

$E(q_A) = q - q_A$ $E_A(q_A) = |E(q_A)|$

$E_p(q_A) = \frac{E(q_A)}{x}$ ($x \neq 0$)