Course Content:
- Basic concepts from set theory, definition of groups, subgroups,
- Lagrange’s theorem, normal subgroups, homomorphisms, factor groups, theorems concerning homomorphisms. (4 Lectures)
- Group actions, Cayley’s theorem, Orbit-stabilizer theorem, conjugacy classes and class equation, Sylow’s theorems. (10 Lectures)
- Free groups, generators and presentation of groups, Direct and semi-direct product of groups. (3 Lectures)
- Definition of Rings, commutative rings, ideals, prime and maximal ideals, existence of maximal ideals, quotient construction, isomorphism theorems, Chinese remainder theorem, fraction fields of domains. (17 Lectures)
- Principal ideal domains, Euclidean domains, unique factorisation domains, Gauss lemma, polynomial rings and irreducibility criteria. (8 Lectures)
Learning Outcomes: upon successful completion of the course,
- the students will have a good understanding of the theory of groups and rings.
- they will be able to appreciate the power of abstraction and gain mathematical maturity.
Text Books:
- Michael Artin, Algebra, Pearson India Education Services Pvt.Ltd, ISBN: 978-93-325-4983-8
- IN Herstein, Topics in algebra, Wiley india Pvt.Ltd, ISBN 978-81-265-1018-4
- John B Fraleigh, A first course in abstract algebra, Addison-wesley, ISBN : 978-02-015-3467-2
- N. Jacobson, Basic Algebra I, Dover publications, ISBN-10 : 9780486471891
- David S. Dummit, Richard M. Foote, Abstract Algebra, Wiley india Pvt.Ltd, ISBN-10 8126532289
References
- N. Bourbaki, Algebra I, Springer-Verlag Berlin Heidelberg, ISBN 978-3-540-64243-5
- Serge Lang, Algebra, volume 211 of Graduate Texts in Mathematics, Springer-Verlag New York, ISBN : 978-0-387-95385-4, 978-1-4612-6551-1